122 research outputs found

    A comparison of RESTART implementations

    Get PDF
    The RESTART method is a widely applicable simulation technique for the estimation of rare event probabilities. The method is based on the idea to restart the simulation in certain system states, in order to generate more occurrences of the rare event. One of the main questions for any RESTART implementation is how and when to restart the simulation, in order to achieve the most accurate results for a fixed simulation effort. We investigate and compare, both theoretically and empirically, different implementations of the RESTART method. We find that the original RESTART implementation, in which each path is split into a fixed number of copies, may not be the most efficient one. It is generally better to fix the total simulation effort for each stage of the simulation. Furthermore, given this effort, the best strategy is to restart an equal number of times from each state, rather than to restart each time from a randomly chosen stat

    Unbiased and Consistent Nested Sampling via Sequential Monte Carlo

    Full text link
    We introduce a new class of sequential Monte Carlo methods called Nested Sampling via Sequential Monte Carlo (NS-SMC), which reframes the Nested Sampling method of Skilling (2006) in terms of sequential Monte Carlo techniques. This new framework allows convergence results to be obtained in the setting when Markov chain Monte Carlo (MCMC) is used to produce new samples. An additional benefit is that marginal likelihood estimates are unbiased. In contrast to NS, the analysis of NS-SMC does not require the (unrealistic) assumption that the simulated samples be independent. As the original NS algorithm is a special case of NS-SMC, this provides insights as to why NS seems to produce accurate estimates despite a typical violation of its assumptions. For applications of NS-SMC, we give advice on tuning MCMC kernels in an automated manner via a preliminary pilot run, and present a new method for appropriately choosing the number of MCMC repeats at each iteration. Finally, a numerical study is conducted where the performance of NS-SMC and temperature-annealed SMC is compared on several challenging and realistic problems. MATLAB code for our experiments is made available at https://github.com/LeahPrice/SMC-NS .Comment: 45 pages, some minor typographical errors fixed since last versio

    Improved Cross-Entropy Method for Estimation

    Get PDF
    The cross-entropy (CE) method is an adaptive importance sampling procedure that has been successfully applied to a diverse range of complicated simulation problems. However, recent research has shown that in some high-dimensional settings, the likelihood ratio degeneracy problem becomes severe and the importance sampling estimator obtained from the CE algorithm becomes unreliable. We consider a variation of the CE method whose performance does not deteriorate as the dimension of the problem increases. We then illustrate the algorithm via a high-dimensional estimation problem in risk management

    Rare Events in Random Geometric Graphs

    Get PDF
    This work introduces and compares approaches for estimating rare-event probabilities related to the number of edges in the random geometric graph on a Poisson point process. In the one-dimensional setting, we derive closed-form expressions for a variety of conditional probabilities related to the number of edges in the random geometric graph and develop conditional Monte Carlo algorithms for estimating rare-event probabilities on this basis. We prove rigorously a reduction in variance when compared to the crude Monte Carlo estimators and illustrate the magnitude of the improvements in a simulation study. In higher dimensions, we use conditional Monte Carlo to remove the fluctuations in the estimator coming from the randomness in the Poisson number of nodes. Finally, building on conceptual insights from large-deviations theory, we illustrate that importance sampling using a Gibbsian point process can further substantially reduce the estimation variance

    Simulation and the Monte Carlo Method

    Get PDF
    This accessible new edition explores the major topics in Monte Carlo simulation Simulation and the Monte Carlo Method, Second Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over twenty-five years ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo Variance reduction techniques such as the transform likelihood ratio method and the screening method The score function method for sensitivity analysis The stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization The cross-entropy method to rare events estimation and combinatorial optimization Application of Monte Carlo techniques for counting problems, with an emphasis on the parametric minimum cross-entropy method An extensive range of exercises is provided at the end of each chapter, with more difficult sections and exercises marked accordingly for advanced readers. A generous sampling of applied examples is positioned throughout the book, emphasizing various areas of application, and a detailed appendix presents an introduction to exponential families, a discussion of the computational complexity of stochastic programming problems, and sample MATLAB programs. Requiring only a basic, introductory knowledge of probability and statistics, Simulation and the Monte Carlo Method, Second Edition is an excellent text for upper-undergraduate and beginning graduate courses in simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method
    corecore